If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+7a+7=0
a = 1; b = 7; c = +7;
Δ = b2-4ac
Δ = 72-4·1·7
Δ = 21
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{21}}{2*1}=\frac{-7-\sqrt{21}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{21}}{2*1}=\frac{-7+\sqrt{21}}{2} $
| 8x-5=x+27 | | 5,1–x=–8x+1,7 | | 2x+18=3(x+1)+5 | | 3x−x=124 | | 3x+1=2(x-1)-1 | | -4x-37=-2x+43 | | -4x+(2x-3)2=3(x+4)-6 | | -15=5(x+3) | | 0.08x=80 | | 4+3d=9 | | 2x-(3x-5)=3(x+5)-2(2x-1) | | m-1/2=3/m+2 | | 2(y-7)=14 | | 2x+24=4x+18 | | 8x+8=5x17 | | 7x2-12x=16 | | -8x-7+2x=41 | | -24=3(4x-3)+9 | | 4(b-3)=48 | | 17x^2+4x-12=0 | | 126=4h | | 7=18-x | | 4m-5=1-10m | | 1x+10=-43+10x | | 61+4x=9x+2 | | 24+a=25 | | g^2+3g=28 | | 7x-7=-19+8x | | –(x+1)=2x+8 | | 7x+5=3xx3 | | 2g–3=7 | | 3(4x+3)+3=2x+2 |